

Models for Optimizing Multiple Communication Cost Metrics in Parallelizing Irregular Applications

> Cevdet Aykanat Bilkent University

SIAM Workshop on Combinatorial Scientific Computing Seattle, WA, USA, 2020

Introduction & Motivation

- Our goal
 - Efficient parallelization of irregular applications for distributed-memory systems
 - Optimization of communication costs
- **Communication costs** = bandwidth cost + latency cost
 - Bandwidth cost ≈ volume of data communicated
 - Total communication volume
 - Maximum communication volume
 - Latency cost ≈ number of messages
 - Total number of messages
 - Maximum number of messages

Introduction & Motivation

- Communication time depends on:
 - latency t_s
 - volume **t**_w
- Around 2KB/4KB
 - latency overhead equals to volume overhead
- Latency is more important for small messages

• Goal

- Most existing approaches aim at reducing volume overhead
- Aim at latency overhead
 - Key to scalability

	Time (mi	cro seconds)
msg size	Cray XE6	Blue Gene/Q
4 B	1.9	5.3
8 B	1.9	5.3
16 B	1.9	5.3
32 B	1.9	5.5
64 B	1.8	5.5
128 B	2.6	7.8
256 B	1.9	8.0
512 B	2.2	9.5
1 KB	2.4	10.2
2 KB	2.7	10.6
4 KB	3.7	12.5
8 KB	9.5	14.3
16 KB	11.9	17.4
32 KB	16.9	22.0
64 KB	27.6	31.2
128 KB	29.3	49.7
256 KB	52.0	86.7
512 KB	108.3	159.7
1 MB	213.5	307.1
2 MB	413.5	602.8
4 MB	821.2	1191.8
8 MB	1636.6	2371.9

A Latency dominates

ping-pong experiments on two systems

Introduction & Motivation

Solid line: Maximum message count Dashed line: Average message count Top – 256 processes Bottom – 512 processes

Outline

- Four different frameworks/models will be discussed
 - utilize existing partitioners in distinct ways
 - do not require development of novel partitioners
- 1. <u>Communication hypergraph</u>
 - minimize total comm vol and total # of mssgs (two phase)
- 2. <u>Multi-stage hypergraph partitioning for Cartesian partitioning</u>
 - minimize total comm vol and provide upper bound on latency metrics
- 3. Recursive hypergraph partitioning
 - Address total comm vol and total # of mssgs (single phase)
- 4. <u>Regularization framework</u>
 - a flexible medium to attain a trade-off between bandwidth and latency cost metrics (two phase)

1. Communication hypergraph

Metrics & Optimization

minimization of total comm vol, max comm volume and total # of mssgs

Methodology & Key Features

two phase custom hypergraph models fixed vertices

Two phase methodology

- <u>Phase 1</u>: computational hypergraph/graph
 - Minimize total comm volume
 - Balance on processors' computational loads
- <u>Phase 2</u>: communication hypergraph
 - Minimize total # of mssgs
 - Balance on processors' volume loads

Communication hypergraph model

- *vertices*: communication tasks
- <u>nets</u>: processors

• Two types of communication tasks

- **Expand** communication task → scatter-like
- Fold communication task → reduce-like
- A *K-way partition* induces (K: # of processors)
 - communication task to processor assignment

Partitioning communication hypergraph

Partition into **K** to distribute communication operations among **K** processors

Net n_k is anchored to part V_k / P_k via a fixed vertex

Expand tasks

Cut net \rightarrow signifies messages that a processor will **receive** from other processors

Partitioning objective minimizing cutsize ≈ minimizing total # of mssgs

 Partitioning constraint maintaining balance on part weights ≈ balances comm volume loads of processors

Distribution of communication tasks among four processors

Applications

- Propoposed for 1D row- and column-parallel SpMV [1]
- Extended and enhanced for 2D row-column-parallel SpMV
 - 2D Fine-grain partitioning [2], Jagged and Cartesian matrix partitioning [3]
- Extended and enhanced for 1D-parallel SpGEMM algorithms [4]
 - row-row-paralel
 - outer-product-paralel
 - inner-product-parallel

[1] Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Matrix-Vector Multiplies, *Bora Ucar and Cevdet Aykanat*, **SIAM** Journal on Scientific Computing, 2004.

- [2] Minimizing communication cost in fine-grain partitioning of sparse matrices, Bora Ucar and Cevdet Aykanat, ISCIS, 2003.
- [3] Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.
- [4] Partitioning models for scaling parallel sparse matrix-matrix multiplication, *Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat*, ACM Transactions on Parallel Computing (TOPC), 2018.

SpMV Speedup – Benefits of reducing latency

28 SpMV instances CHG enhanced 2D jagged model obtains the most promising results **CHG**: communication hypergraph **CKBD**: Checkerboard, JGD: Jagged, FG: Fine grain

Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.

SpGEMM: Strong Scaling Experiments (Communication hypergraph models)

25 C=AA SpGEMM instances

CHG enhanced Row-row-parallel model obtains the most promising results

Partitioning models for scaling parallel sparse matrix-matrix multiplication, *Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat,* ACM Transactions on Parallel Computing (TOPC), 2018.

Enhanced for encoding send-volume balancing in reduce operations

- Original model does not encapsulate minimizing maximum volume loads on irregular reduce tasks
- New vertex weights:
 - **Degree** for processor vertices
 - -1 for comm task vertices
- Part weights correctly encapsulate send volume loads of processors
- Tools do not support **negative** weights
- Vertex reweighting scheme
 - max degree Degree for processor vertices
 - +1 for comm task vertices

Reduce Operations: Send Volume Balancing While Minimizing Latency, *M. Ozan Karsavuran, Seher Acer and C. Aykanat,* **IEEE Transactions on Parallel and Distributed Systems,** 2020.

2. <u>Multi-stage hypergraph partitioning for</u> <u>Cartesian partitioning</u>

Metrics & Optimization

minimization of **total communication volume** upper bound on **latency metrics - total/maximum # of mssgs**

Methodology & Key Features

partitioning along each dimension multi-constraint partitioning

HP models for Cartesian partitioning

- multi-dimensional workload arrays
 - <u>SpMV</u>: **2D** sparse matrix
 - <u>Tensor</u>: N-dimenional sparse workload array for N-mode tensor
 - SpGEMM: 3D sparse workcube
- <u>Assumption</u>: **multi-dimensional** virtual processor topology (VPT)
- Multi-dimensional hypergraph partitioning framework that matches VPT dimensions
 - Enforces upper bounds on latency cost metrics
- At each partitioning stage
 - Minimize the total comm volume along the respective dimension
- Multi-constraint vertex weight formulation
 - Encode computational load balance

Cartesian Partitioning Applications

- First proposed for 2D row-column-paralel SpMV [1][2]
 - 2D paralell SpMV [3]: pre- and post-comm along cols and rows of VPT
- Extended to N-dimensional sparse tensor decomposition [4]
 - CPD-ALS
- Recently enhanced for 2D- and 3D-parallel SpGEMM algorithms [5]
 - 2D: Sparse Summa [6]
 - 3D: Split-3D-SpGEMM [7]
 - 2D- and 3D-cartesian partitioning of a 3D task domain

[1] A hypergraph-partitioning approach for coarse-grain decomposition, Umit. V. Çatalyürek and Cevdet Aykanat, ACM/IEEE SC2001.

- [2] On Two-Dimensional Sparse-Matrix Partitioning: Models, Methods and a Recipe, Umit V. Çatalyürek, Cevdet Aykanat and Bora Ucar, SIAM Journal on Scientific Computing,, 2010.
- [3] An efficientparallel algorithm for matrix-vector multiplication, B. Hendrickson, R. Leland, and S. Plimpton, Int. J. High Speed Computing, 1995
- [4] Improving medium-grain partitioning for scalable sparse tensor decomposition, Seher Acer, Tugba Torun, Cevdet Aykanat, IEEE TPDS, 2018.
- [5] Cartesian Partitioning Models for 2D and 3D Parallel SpGEMM Algorithms, Gunduz Vehbi Demirci and Cevdet Aykanat, IEEE TPDS (under review)
- [6] Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments, A. Buluc, and J. R. Gilbert, SIAM Journal on Scientific Computing, 2012.
- [7] Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication, A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams, SIAM Journal on Scientific Computing, 2016.

Hypergraph Model for Cartesian Partitioning of 3D Tensor ¹⁶

- **3-stage** hypergraph partitioning model with *total cutsize = total communication volume*
 - Vertices represent slices and nets represent (sub)slices
 - Net *n* connects vertex *v* if intersection of their slices is a nonzero fiber
 - Direct extension of 2D checkerboard does not encode comm volume correctly
 - Previos partitions incur **subnets** in the later HP models

• Hypergraph $\mathcal{H}^A = (\mathcal{V}^A, \mathcal{N}^B \cup \mathcal{N}^C)$

- one vertex for each horizontal slice
- one net for each lateral slice, one net for each frontal slice
- one net for each latera • Q-way partition of \mathcal{H}^A

- *Q* chunks of horizontal slices
- dividing slices along other modes into Q subslices

QxRxS

3

3x4x2 processor mesh

Hypergraph Model for Cartesian Partitioning of 3D Tensor

- **3-stage** hypergraph partitioning model with *total cutsize = total communication volume*
 - Vertices represent slices and nets represent (sub)slices
 - Net n connects vertex v if intersection of their slices is a nonzero fiber
 - Direct extension of 2D checkerboard does not encode comm volume correctly
 - Previos partitions incur subnets in the later HP models

Hypergraph $\mathcal{H}^A = (\mathcal{V}^A, \mathcal{N}^B \cup \mathcal{N}^C)$ one vertex for each horizontal slice • one net for each lateral slice, one net for each frontal slice Stage Q-way partition of \mathcal{H}^A • Q chunks of horizontal slices dividing slices along other modes into Q subslices Hypergraph $\mathcal{H}^B = (\mathcal{V}^B, \mathcal{N}^A \cup \mathcal{N}^C)$ • one vertex for each lateral slice N one net for each horizontal slice, one net for each frontal subslice Stage *R*-way partition of \mathcal{H}^B • *R* chunks of lateral slices dividing (sub)slices along other modes into R subslices

3

QxRxS

3x4x2 processor mesh

Hypergraph Model for Cartesian Partitioning of 3D Tensor ¹⁸

- **3-stage** hypergraph partitioning model with *total cutsize = total communication volume*
 - Vertices represent slices and nets represent (sub)slices
 - Net n connects vertex v if intersection of their slices is a nonzero fiber
 - Direct extension of 2D checkerboard does not encode comm volume correctly
 - Previos partitions incur subnets in the later HP models

QxRxS

Experiments

- <u>Partitioning</u>: PaToH with 4% imbalance at each stage
- <u>Baseline</u>: DMS [1] (random permutation)
- Parallel CPD-ALS code: implemented in C (MPI, Intel MKL)
- <u>System</u>: Cray XC40 (two 12-core Intel Haswell Xeon, 128 GB)
- Decomposition rank: F = 16
- <u>Number of processors:</u> 64, 128, 256, 512, 1024
- <u>12 sparse tensors:</u> nonzeros between 466K and 140M; nine 3-mode and three 4-mode

number of		number o	f messages	communication volume parallel CPD-ALS runtime			LS runtime
processors	imbalance	max	avg	max	avg	communication	total
64	1.01	0.97	0.93	0.61	0.42	0.50	0.82 1 <mark>8%</mark>
128	1.01	0.97	0.93	0.60	0.45	0.56	0.78 <mark>22%</mark>
256	1.05	0.97	0.91	0.60	0.49	0.59	0.74 <mark>26%</mark>
512	1.05	0.98	0.90	0.53	0.51	0.61	0.72 <mark>28%</mark>
1024	1.05	0.97	0.85	0.53	0.53	0.61	0.72 <mark>28%</mark>
overall	1.03	0.97	0.90	0.57	0.48	0.57	0.76
reduction rates	5: -3%	3%	10%	43%	52%	43%	24%

Average results of proposed model normalized w.r.t. those of baseline model

[1] S. Smith and G. Karypis, A medium-grained algorithm for distributed sparse tensor factorization, IPDPS'16. 14

Experiments

- Strong scaling results
- CPD-ALS runtime
 - Baseline: random cartesian partitioning

Experiments for 2D and 3D SpGEMM

Average speedup curves for 20 C=AA instances

- With increasing number of processors
 - performance gap between random and hypergraph partitioning increases significantly
 - 3D begins to perform better than 2D

H:Hypergrah

3. Recursive hypergraph partitioning

Metrics & Optimization

minimization of total comm vol and total # of mssgs

Methodology & Key Features

single phase

message net augmentation

Recursive HP framework

- Addresses total comm volume and total # of mssgs
- Single phase framework
- Standard HP models: nets encapsulate total comm vol
- Augment standard HP model with message nets
 - encapsulate total # of messages
- First proposed for scaling 1D row-parallel and column parallel SpMV [1]
- Extended for 2D row-column-parallel SpMV [2]
 - based on fine-grain and medium-grain [3] partitioning

[1] A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously, *Oguz Selvitopi, Seher Acer and Cevdet Aykanat*, **IEEE TPDS**, 2017.

[2] Optimizing nonzero-based sparse matrix partitioning models via reducing latency, *Seher Acer, Oguz Selvitopi, Cevdet Aykanat,* Journal of Parallel and Distributed Computing, 2018.

[3] A Medium-grain method for fast 2D bipartitioning of sparse matrices, Daniel Pelt and Rob Bisseling, IPDPS 2014.

RB-based Partitioning

Number of cut message nets

 $M_{new} - M_{cur}$ Increase in number of messages that P_{cur} communicates with others

Correctness

Message nets and volume nets with respective costs of t_s and t_w

- Minimizing cutsize \approx minimizing the increase in communication cost
- Provides a more accurate communication cost representation

Flexible

Can be realized by using any hypergraph partitioning tool

Cheap

 $Cost(our model) = Cost(standard model) + O(p \log_2 K)$

• Our model traverses each pin once for each RB tree level

Experiments

For message net cost of 50 with unit volume net cost:

- Total number of messages: 35% 44% improvement
- Maximum number of messages: 20% 31% improvement
- Total volume: 17% 48% degradation
- Maximum volume: 25% 85% degradation
- Partitioning time: 8% 33% degradation
- Parallel SpMV time: 8% 29% improvement

Average results for 30 SpMV instances normalized with respect to standard model

message net cost	К –	number of messages			volume			partitioning		parallel			
		t	tot	n	nax	1	tot	n	nax	time		SpMV time	
	128		0.65		0.76		1.17		1.25		1.08		0.924
	256		0.59		0.70		1.25		1.44		1.14		0.846
50	512		0.56		0.69		1.33		1.57		1.21		0.760
	1024		0.57		0.74		1.41		1.69		1.24		0.715
	2048		0.59		0.80		1.48		1.85		1.33		0.708

1D parallel SpMV Experiments

HP-L-50: refers to message net cost of 50 with unit volume net cost

4. <u>Regularization framework</u>

Metrics & Optimization

trade-off between **bandwidth** and **latency** costs

Methodology & Key Features

two phase many small-sized messages

Regularization Framework

- **Regularize** irregular **P2P** messages
 - impose regular communication pattern(s)
 - VPT (Virtual Process Topology)
- Exploit VPT to attain a trade-off between **bandwidth** and **latency** cost metrics
- Using different **dimensions** in the formation of the **VPT**
 - low-dimensional VPT \rightarrow favors bandwidth costs over latency costs
 - high-dimensional VPT → favors latency costs over bandwidth costs.
- Especially tailored for latency bound applications where
 - messages are small or medium sized
 - there is high variance in the message counts of processors

Oguz Selvitopi and Cevdet Aykanat. "Regularizing Irregularly Sparse Point-to-point Communications." The International Conference for High Performance Computing, Networking, Storage, and Analysis, SC19

Virtual Process Topology (VPT): Basics

- Characterized by
 - Dimension
 - Dimension sizes
 - Process neighborhood
- K processors P_1, P_2, \dots, P_K
- *n*-dimensional VPT $T_n(k_1, k_2, ..., k_n)$
 - k_d : size of dimension $1 \le d \le n$
 - $K = k_1 \times k_2 \times \cdots \times k_n$
- Denote each processor P_i as a vector of n coordinates

•
$$\langle P_i^n, P_i^{n-1}, \dots, P_i^1 \rangle$$
, where $P_i^d \in \{1, 2, \dots, k_d\}$

K=64 processes organized into 3-dimensional VPT T₃(4,4,4)

VPT: Process neighborhood

- Two processors are **neighbors** if
 - They differ in a single coordinate
 - $N(P_i, d)$ = neighbors of P_i at dimension d
 - Only processes in the same group can directly communicate with each other
- vs. neighborhood definitions in common regularly structured applications

Blue:Neighbors of P_i along 1^{st} dimensionRed:Neighbors of P_i along 2^{nd} dimensionOrange:Neighbors of P_i along 3^{rd} dimension

VPT: Process neighborhood

- Two processors are **neighbors** if
 - They differ in a single coordinate
- In dimension *d*, there are *K*/*k*_{*d*} processor groups, each containing *k*_{*d*} processors
 - Only processes in the same group can directly communicate with each other
- vs. neighborhood definitions in common regularly structured applications

Blue: Neighbor process groups along 1st dimension
 Red: Neighbor process groups along 2nd dimension
 Orange: Neighbor process groups along 3rd dimension

VPT versus k-ary n-cube networks

- k-ary n-cube networks
 - Generalization of hypercubes
 - k = # of nodes at each dimension
 - n = # of dimensions
 - nodes in a dimension are connected as a 1D torus⁴

• Two basic differences

- Context: software vs. hardware
- Neighborhood definition

Store-and-forward Algorithm: Multi-stage Communication

- A few more definitions
 - **SendSet(P**_i): subset of processors P_i needs to send a mssg to
 - *m*_{ij}: the message to be sent from *P*_i to *P*_j
- Straightforward approach (T₁)
 - No structure: each process may communicate with each other
- Use VPT to perform communication
- A VPT **T**_n with *n* > 1
 - disables direct comm between nonneighbor processes
 - store-and-forward scheme to handle nonneighbor mssgs
 - **staged execution:** communication proceeds in *n* stages
 - communication in a stage restricted to neighbor processes along the respective dimension

Communicating a Single Message on VPT

- Message m_{ii}
 - Source P_i, destination P_i
 - At each stage Store or Forward

- ▷ How many times a message get forwarded?
 - Hamming distance
 - E-cube routing for hypercubes
 - Dimension-ordered deterministic routing

Stage *d*

$$m_{ij}$$
 with destination
 $P_j = \langle P_j^n, \dots, P_j^{d+1}, \mathbf{P}_j^d, P_j^{d-1}, \dots, P_j^1 \rangle$

Arrives at intermediate process P_k Decide whether to forward m_{ij} by comparing dth coordinate

$$P_j^d = P_k^d \twoheadrightarrow \text{Store } m_{ij} \text{ at this stage}$$
$$P_j^d \neq P_k^d \oiint \text{Forward } m_{ij} \text{ to}$$
$$\left\langle P_j^n, \dots, P_j^{d+1}, \mathbf{P}_k^d, P_j^{d-1}, \dots, P_j^1 \right\rangle$$

Communicating a Single Message on a VPT

Stage 1:source $\langle 1,1,2 \rangle$ destination $\langle 3,3,4 \rangle$ to $\langle 1,1,4 \rangle$

Stage 2: source $\langle 1, 1, 4 \rangle$ destination $\langle 3, 3, 4 \rangle$ to $\langle 1, 3, 4 \rangle$

Stage 3: source $\langle 1, 3, 4 \rangle$ destination $\langle 3, 3, 4 \rangle$ to $\langle 3, 3, 4 \rangle$

Multiple messages on VPT

- The communication between P_i and its neighbor P_i
 - A single message containing a number of submessages

• Submessage

• two-tuple: (destination processor, message content)

- Direct message between P_i and $P_j \rightarrow M_{ij}$
- Submessage with source P_i and destination $P_h \rightarrow (P_h, m_{ih})$

Algorithm: Observations

• Scenario 1: two submessages originate from different processes but destined for the same

Algorithm: Observations

- Processing of submessages in received messages
 - Scatter submessages across multiple forward buffers
- A buffer that will be used in communication stage *d* may be filled with submessages received at any stage < *d*

- $\log_2 K$ stages of communication (hypercube topology)
- K = number of processors

Forming VPT

- Given # of processes K
 - How to organize them?
 - How to choose VPT parameters?

- Two important aspects
 - The dimension of the VPT (=*n*)
 - The organization of the processes
 - *K=64, n=2* → 32x2, 16x4, 8x8

VPT formation scheme

- First $\log_2 K \mod n$ dimensions \rightarrow size $2^{\lfloor \log_2 K/n \rfloor + 1}$
- The remaining $n (\log_2 K \mod n)$ \rightarrow size $2^{\lfloor \log_2 K/n \rfloor}$
- Ensures no two dimension sizes differ by more than a factor of 2
- Lowest upper bound on max message count bound

- $K = k_1 \times k_2 \times \dots \times k_n$
- Motivation: $k_1, k_2, ..., k_n$ should be close to each other to keep max mssg count small
- Caveat: May not be always desirable!

1D row parallel SpMV Experiments: Setup • Schemes

- BL → Baseline (=STFW1)
- **STFW** → **STFW2**, **STFW3**, etc. (STFWn: VPT with dimension n)
- Systems
 - BlueGene/Q, Cray XC40, Cray XK7
- Processes
 - 32 to 512 (small scale)
 - 4K to 16K (large scale)
- Dataset
 - 22 latency-bound instances
 - Sparsity pattern: dense rows/cols and high coefficient of variation on row/col degrees

Evaluation: Performance metrics

Volume metric

- vavg = average volume 1.6x-3.3x more volume than BL
- Latency metricsUp to 61% improvement in communication timemmax = max msg count 4.6x-15.1x improvementUp to 44% improvement in overall SpMV timemavg = avg msg count 3x-8x improvementThe buffer usage < 2x the buffer usage of BL!</td>

Effect on Scalability

Communication Performance (large scale)

Torus network – 16K processes

Scheme	mmax	mavg	vavg	Comm time	Sch
BL	1054.9	137.6	425	8220	ĺ
STFW2	160.6	61.0	683	1109	ST
STFW3	65.1	34.4	887	498	ST
STFW4	41.8	24.3	1064	391	ST
STFW8	20	13.9	1568	510	STI
STFW9	19	13.9	1601	491	ST
STFW13	15	11.4	1917	694	STF
STFW14	14	10.5	2017	696	STF

Dragonfly network – 4K processes

Scheme	mmax	mavg	vavg	Comm time
BL	486.6	105.5	819	1419
STFW2	86.1	43.7	1271	294
STFW3	39.0	25.0	1682	221
STFW4	26.1	18.1	2024	238
STFW7	17.0	13.0	2594	199
STFW8	16.0	12.8	2663	270
STFW11	13.0	10.9	3098	289
STFW12	12.0	9.8	3312	387

mmax max message count
mavg average message count
vavg average volume (words)

95% improvement in communication time

86% improvement in communication time

2D Cartesian vs. STFW2 for SpMV

- 2D row-column-parallel SpMV utilizing
 2D Cartesian Partitioning
 - Pre-comm: expand x-vector entries along *cols* of 2D VPT
 - Local SpMV computations
 - Post-comm: reduce on partial y-vector results along rows of 2D VPT
- 1D row-parallel SpMV using STFW2
 - Pre-comm (STFW2)
 - Send x-vector entries along <u>columns</u> of 2D **VPT**
 - Send and forward x-vector entries along <u>rows</u> of 2D VPT
 - Local SpMV computations

COMPARISON

- 2D Cartesian
 - For large number of processors it suffers from large number of constraints
 - may limit the solution space

STFW2

- 1D partitioning
- Two stages of communication
- Latency cost can be further reduced by using 3D and higher dimensional VPTs

Conclusions

- Need better partitioning models for parallelizing irregular applications
 - More accurate encapsulation of communication costs on HPC systems
 - Communication is the bottleneck
 - Latency "lags" behind the bandwidth
 - Models should focus <u>more</u> on latency aspects
 - Communication costs are even more complex!
 - Network topology, node hierarchy, routing protocol, contention, etc.
- Directions taken in this talk
 - More capable partitioning models and/or frameworks
 - Enhance existing models / New partitioning models
 - Novel communication algorithms to offer trade-offs
- Challenges
 - Which method suits the given application?
 - Parallel and scalable partitioners
 - How to enhance models to take into account more complex cost functions?

Conclusions

	Bar	ndwidth	Late	ency	Input/Output	# of Phases
Ινιετησά	total	max	total	max	Conformability	
Communication Hypergraph	√ 1	\checkmark	\checkmark		x ²	two
Cartesian Partitioning	\checkmark		√3	√3	\checkmark	multi- stage
Message-net augmentation within RB HP	\checkmark		\checkmark		\checkmark	one
STFW	√ 1		√3	√3	\checkmark	two

- 1: may increase in the second phase
- 2: 1D non-conformal, 2D fine-grain conformal
- 3: provides upper bound

Collaborators

Ümit V. Çatalyürek, Bora Uçar, B. Barla Cambazoğlu Enver Kayaaslan, Kadir Akbudak

R. Oğuz Selvitopi, Seher Acer, Gündüz V. Demirci, M. Ozan Karsavuran, Tuğba Torun