
Models for Optimizing Multiple
Communication Cost Metrics in 

Parallelizing Irregular
Applications

Cevdet Aykanat

Bilkent University

SIAM Workshop on Combinatorial Scientific Computing

Seattle, WA, USA, 2020



• Our goal

• Efficient parallelization of irregular applications for distributed-memory systems 

• Optimization of communication costs

• Communication costs = bandwidth cost + latency cost
• Bandwidth cost ≈ volume of data communicated 

• Total communication volume

• Maximum communication volume

• Latency cost ≈ number of messages 
• Total number of messages

• Maximum number of messages

2

Introduction & Motivation



La
te

n
cy

  d
o

m
in

at
e

s

V
o

lu
m

e
  d

o
m

in
ate

s
Time (micro seconds)

msg size Cray XE6 Blue Gene/Q

4 B 1.9 5.3

8 B 1.9 5.3

16 B 1.9 5.3

32 B 1.9 5.5

64 B 1.8 5.5

128 B 2.6 7.8

256 B 1.9 8.0

512 B 2.2 9.5

1 KB 2.4 10.2

2 KB 2.7 10.6

4 KB 3.7 12.5

8 KB 9.5 14.3

16 KB 11.9 17.4

32 KB 16.9 22.0

64 KB 27.6 31.2

128 KB 29.3 49.7

256 KB 52.0 86.7

512 KB 108.3 159.7

1 MB 213.5 307.1

2 MB 413.5 602.8

4 MB 821.2 1191.8

8 MB 1636.6 2371.9

• Communication time depends on:
• latency ts

• volume tw

• Around 2KB/4KB
• latency overhead equals to volume overhead

• Latency is more important for small 
messages

• Goal
• Most existing approaches aim at reducing 

volume overhead
• Aim at latency overhead 

• Key to scalability

tcomm = ts + mtw

ping-pong experiments on two systems

Introduction & Motivation
3



Solid line: Maximum 
message count
Dashed line: Average 
message count
Top – 256 processes
Bottom – 512 processes

4

Introduction & Motivation



• Four different frameworks/models will be discussed
• utilize existing partitioners in distinct ways 
• do not require development of novel partitioners

1. Communication hypergraph
• minimize total comm vol and total # of mssgs (two phase)

2. Multi-stage hypergraph partitioning for Cartesian partitioning
• minimize total comm vol and provide upper bound on latency metrics

3. Recursive hypergraph partitioning
• Address total comm vol and total # of mssgs (single phase)

4. Regularization framework
• a flexible medium to attain a trade-off between bandwidth and latency cost 

metrics (two phase)

Outline
5



1. Communication hypergraph
Metrics & Optimization

minimization of total comm vol, max comm volume and total # of mssgs 

Methodology & Key Features
two phase
custom hypergraph models
fixed vertices

6



Generalized Communication Hypergraph

• Two phase methodology
• Phase 1: computational hypergraph/graph

• Minimize total comm volume
• Balance on processors’ computational loads

• Phase 2: communication hypergraph
• Minimize total # of mssgs
• Balance on processors’ volume loads

• Communication hypergraph model
• vertices: communication tasks
• nets: processors

• Two types of communication tasks
• Expand communication task scatter-like
• Fold communication task  reduce-like

• A K-way partition induces (K: # of processors)
• communication task to processor assignment

7

Net nk is anchored to Vk / Pk

via a fixed vertex



Partitioning communication hypergraph
Partition into K to distribute communication operations among K processors

Net nk is anchored to part Vk / Pk via  a fixed vertex

Distribution of communication tasks among four processors

Pk Pm

PkPk

Pk Pm

Expand tasks
Cut net  signifies messages that a processor 
will receive from other processors

Reduce tasks
Cut net  signifies messages that will be sent
from a processor to other processors

fixed vertex

net

• Partitioning objective minimizing 
cutsize ≈ minimizing total # of 
mssgs

• Partitioning constraint 
maintaining balance on part 
weights ≈ balances comm volume 
loads of processors

8



Applications
• Propoposed for 1D row- and column-parallel SpMV [1]

• Extended and enhanced for 2D row-column-parallel SpMV 
• 2D Fine-grain partitioning [2], Jagged and Cartesian matrix partitioning [3]

• Extended and enhanced for 1D-parallel SpGEMM algorithms [4]
• row-row-paralel

• outer-product-paralel

• inner-product-parallel

[1] Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Matrix-Vector Multiplies, Bora Ucar and Cevdet Aykanat, SIAM 
Journal on Scientific Computing, 2004.
[2] Minimizing communication cost in fine-grain partitioning of sparse matrices, Bora Ucar and Cevdet Aykanat, ISCIS, 2003.
[3] Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.
[4] Partitioning models for scaling parallel sparse matrix-matrix multiplication, Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat, ACM Transactions on Parallel 
Computing (TOPC), 2018.

9



SpMV Speedup – Benefits of reducing latency 

Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.

CHG: communication hypergraph
CKBD: Checkerboard, JGD: Jagged, FG: Fine grain

28 SpMV instances 
CHG enhanced 2D jagged model obtains the most promising results

10



SpGEMM: Strong Scaling Experiments (Communication hypergraph models)

Outer-product-parallel Inner-product-parallel Row-row-product-parallel

Number of processors Number of processors Number of processors

Partitioning models for scaling parallel sparse matrix-matrix multiplication, Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat, ACM Transactions on Parallel Computing 
(TOPC), 2018.

25 C=AA SpGEMM instances
CHG enhanced Row-row-parallel model obtains the most promising results

11



Enhanced for encoding send-volume balancing in reduce 
operations

• Original model does not encapsulate 
minimizing maximum volume loads on 
irregular reduce tasks

• New vertex weights:
• Degree for processor vertices
• -1 for comm task vertices

• Part weights correctly encapsulate send 
volume loads of processors

• Tools do not support negative weights

• Vertex reweighting scheme
• max degree - Degree for processor vertices
• +1 for comm task vertices

Reduce Operations: Send Volume Balancing While Minimizing Latency, M. Ozan Karsavuran, Seher Acer and C. Aykanat, IEEE Transactions on Parallel and Distributed 
Systems, 2020.

12



2. Multi-stage hypergraph partitioning for 
Cartesian partitioning
Metrics & Optimization

minimization of total communication volume
upper bound on latency metrics - total/maximum # of mssgs

Methodology & Key Features
partitioning along each dimension
multi-constraint partitioning

13



• multi-dimensional workload arrays

• SpMV: 2D sparse matrix

• Tensor: N-dimenional sparse workload array for N-mode tensor

• SpGEMM: 3D sparse workcube

• Assumption: multi-dimensional virtual processor topology (VPT)

• Multi-dimensional hypergraph partitioning framework that matches VPT dimensions

• Enforces upper bounds on latency cost metrics

• At each partitioning stage

• Minimize the total comm volume along the respective dimension

• Multi-constraint vertex weight formulation

• Encode computational load balance

HP models for Cartesian partitioning 
14



Cartesian Partitioning Applications

• First proposed for 2D row-column-paralel SpMV [1][2]
• 2D paralell SpMV [3]: pre- and post-comm along cols and rows of VPT

• Extended to N-dimensional sparse tensor decomposition [4]
• CPD-ALS

• Recently enhanced for 2D- and 3D-parallel SpGEMM algorithms [5]
• 2D: Sparse Summa [6]

• 3D: Split-3D-SpGEMM [7]

• 2D- and 3D-cartesian partitioning 

of a 3D task domain

[1] A hypergraph-partitioning approach for coarse-grain decomposition, Umit. V. Çatalyürek and Cevdet Aykanat, ACM/IEEE SC2001.
[2] On Two-Dimensional Sparse-Matrix Partitioning: Models, Methods and a Recipe, Umit V. Çatalyürek, Cevdet Aykanat and Bora Ucar, SIAM Journal on Scientific Computing,, 2010.
[3] An efficientparallel algorithm for matrix-vector multiplication, B. Hendrickson, R. Leland, and S. Plimpton, Int. J.High Speed Computing, 1995
[4] Improving medium-grain partitioning for scalable sparse tensor decomposition, Seher Acer, Tugba Torun, Cevdet Aykanat, IEEE TPDS, 2018.
[5] Cartesian Partitioning Models for 2D and 3D Parallel SpGEMM Algorithms, Gunduz Vehbi Demirci and Cevdet Aykanat, IEEE TPDS (under review)
[6] Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments, A. Buluc¸ and J. R. Gilbert, SIAM Journal on Scientific Computing, 2012.
[7] Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication, A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams, SIAM 
Journal on Scientific Computing, 2016.

15



Hypergraph Model for Cartesian Partitioning of 3D Tensor
• 3-stage hypergraph partitioning model with   total cutsize = total communication volume

• Vertices represent slices and nets represent (sub)slices                                  QxRxS

• Net 𝑛 connects vertex 𝑣 if intersection of their slices is a nonzero fiber 3x4x2 processor mesh

• Direct extension of 2D checkerboard does not encode comm volume correctly

• Previos partitions incur subnets in the later HP models

• Hypergraph ℋ𝐴 = 𝒱𝐴,𝒩𝐵 ∪𝒩𝐶

• one vertex for each horizontal slice

• one net for each lateral slice, one net for each frontal slice

• 𝑄-way partition of ℋ𝐴

• 𝑄 chunks of horizontal slices

• dividing slices along other modes into 𝑄 subslices

S𝐭
𝐚
𝐠
𝐞
𝟏

16



Hypergraph Model for Cartesian Partitioning of 3D Tensor
• 3-stage hypergraph partitioning model with   total cutsize = total communication volume

• Vertices represent slices and nets represent (sub)slices                                  QxRxS

• Net 𝑛 connects vertex 𝑣 if intersection of their slices is a nonzero fiber 3x4x2 processor mesh

• Direct extension of 2D checkerboard does not encode comm volume correctly

• Previos partitions incur subnets in the later HP models

• Hypergraph ℋ𝐴 = 𝒱𝐴,𝒩𝐵 ∪𝒩𝐶

• one vertex for each horizontal slice

• one net for each lateral slice, one net for each frontal slice

• 𝑄-way partition of ℋ𝐴

• 𝑄 chunks of horizontal slices

• dividing slices along other modes into 𝑄 subslices

• Hypergraph ℋ𝐵 = 𝒱𝐵,𝒩𝐴 ∪𝒩𝐶

• one vertex for each lateral slice

• one net for each horizontal slice, one net for each frontal subslice

• 𝑅-way partition of ℋ𝐵

• 𝑅 chunks of lateral slices

• dividing (sub)slices along other modes into 𝑅 subslices

S𝐭
𝐚
𝐠
𝐞
𝟏

St
ag

e
𝟐

17



Hypergraph Model for Cartesian Partitioning of 3D Tensor
• 3-stage hypergraph partitioning model with   total cutsize = total communication volume

• Vertices represent slices and nets represent (sub)slices                                  QxRxS

• Net 𝑛 connects vertex 𝑣 if intersection of their slices is a nonzero fiber 3x4x2 processor mesh

• Direct extension of 2D checkerboard does not encode comm volume correctly

• Previos partitions incur subnets in the later HP models

• Hypergraph ℋ𝐵 = 𝒱𝐵,𝒩𝐴 ∪𝒩𝐶

• one vertex for each lateral slice

• one net for each horizontal slice, one net for each frontal subslice

• 𝑅-way partition of ℋ𝐵

• 𝑅 chunks of lateral slices

• dividing (sub)slices along other modes into 𝑅 subslices

St
ag

e
𝟐

• Hypergraph ℋ𝐶 = 𝒱𝐶,𝒩𝐴 ∪𝒩𝐵

• one vertex for each frontal slice

• one net for each horizontal subslice, one net for each lateral subslice

• 𝑆-way partition of ℋ𝐶

• 𝑆 chunks of frontal slices

• dividing subslices along other modes into 𝑆 subsubslices 

St
ag

e
 𝟑

18



• Partitioning: PaToH with 4% imbalance at each stage

• Baseline: DMS [1] (random permutation) 

• Parallel CPD-ALS code: implemented in C (MPI, Intel MKL)

• System: Cray XC40 (two 12-core Intel Haswell Xeon, 128 GB)

• Decomposition rank: 𝐹 = 16

• Number of processors: 64, 128, 256, 512, 1024 

• 12 sparse tensors: nonzeros between 466K and 140M; nine 3-mode and three 4-mode

number of 
processors imbalance

number of messages communication volume parallel CPD-ALS runtime

max avg max avg communication total

64 1.01 0.97 0.93 0.61 0.42 0.50 0.82

128 1.01 0.97 0.93 0.60 0.45 0.56 0.78

256 1.05 0.97 0.91 0.60 0.49 0.59 0.74

512 1.05 0.98 0.90 0.53 0.51 0.61 0.72

1024 1.05 0.97 0.85 0.53 0.53 0.61 0.72

overall 1.03 0.97 0.90 0.57 0.48 0.57 0.76

Average results of proposed model normalized w.r.t. those of baseline model

18%
22%

26%

28%

28%

52% 43% 24%43%-3% 3% 10%

Experiments

[1] S. Smith and  G. Karypis, A medium-grained algorithm for distributed sparse tensor factorization, IPDPS’16.

reduction rates:

14



• Strong scaling results

• CPD-ALS runtime

• Baseline: random 
cartesian partitioning

Experiments
20



Experiments for 2D and 3D SpGEMM

Average speedup curves for 20 C=AA instances

• With increasing number of processors 
• performance gap between random and hypergraph partitioning increases significantly
• 3D begins to perform better than 2D

H:Hypergrah
R:Random

21



3. Recursive hypergraph partitioning
Metrics & Optimization

minimization of total comm vol and total # of mssgs 

Methodology & Key Features
single phase

message net augmentation

22



Recursive HP framework 
• Addresses total comm volume and total # of mssgs

• Single phase framework

• Standard HP models: nets encapsulate total comm vol

• Augment standard HP model with message nets 
• encapsulate total # of messages

• First proposed for scaling 1D row-parallel and column parallel SpMV [1]

• Extended for 2D row-column-parallel SpMV [2]
• based on fine-grain and medium-grain [3] partitioning 

[1] A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously, Oguz Selvitopi, Seher Acer and Cevdet Aykanat, IEEE 
TPDS, 2017.
[2] Optimizing nonzero-based sparse matrix partitioning models via reducing latency, Seher Acer, Oguz Selvitopi, Cevdet Aykanat, Journal of Parallel and Distributed 
Computing, 2018.
[3] A Medium-grain method for fast 2D bipartitioning of sparse matrices, Daniel Pelt and Rob Bisseling, IPDPS 2014.

23



• We augment standard hypergraph model with message nets
• The nets in the standard models: volume nets

• Our model relies on recursive hypergraph bipartitioning

• A message net connects vertices representing items/tasks that 
necessitate a message together

• Such items/tasks are encouraged to be together either in 𝑃𝐿 or 𝑃𝑅

• A send net 𝑠𝑘 added for each 𝑃𝑘 which 𝑃𝑐𝑢𝑟 sends a message to 

• Connects vertices representing input items sent to 𝑃𝑘

• A receive net 𝑟𝑘 added for each 𝑃𝑘 which 𝑃𝑐𝑢𝑟 receives a message from

• Connects vertices representing tasks that need input items received from 𝑃𝑘

Basics

• Volume nets: maintained via net-splitting 

• Message nets: added to the current hypergraph to be bipartitioned

Nets

Having both net types in 
bipartitions

Simultaneous reduction of 
bandwidth and latency costs 

Message nets

RB Framework and Message Nets

24



RB-based Partitioning

Message nets and volume nets with respective costs of 𝑡𝑠 and 𝑡𝑤

• Minimizing cutsize ≈ minimizing the increase in communication cost

• Provides a more accurate communication cost representation

𝑀𝑛𝑒𝑤 – 𝑀𝑐𝑢𝑟Number of cut 
message nets

Increase in number of messages that 
𝑃𝑐𝑢𝑟 communicates with others 

Correctness

Can be realized by using any hypergraph partitioning tool

𝐶𝑜𝑠𝑡(our model) = 𝐶𝑜𝑠𝑡(standard model) + 𝑂(𝑝 log2𝐾) 

• Our model traverses each pin once for each RB tree level

Flexible

Cheap

25



26



• Total number of messages:  𝟑𝟓%− 𝟒𝟒% improvement

• Maximum number of messages: 20% − 31%
improvement

• Total volume: 17% − 48% degradation

• Maximum volume: 25% − 85% degradation

• Partitioning time: 8% − 33% degradation

• Parallel SpMV time: 𝟖%− 𝟐𝟗% improvement

message
net cost

𝐾
number of messages volume partitioning

time
parallel 

SpMV timetot max tot max

50

128 0.65 0.76 1.17 1.25 1.08 0.924

256 0.59 0.70 1.25 1.44 1.14 0.846

512 0.56 0.69 1.33 1.57 1.21 0.760

1024 0.57 0.74 1.41 1.69 1.24 0.715

2048 0.59 0.80 1.48 1.85 1.33 0.708

Average results for 30 SpMV instances
normalized with respect to standard model

Experiments

↑ message net cost
↑ improvements in 

latency metrics

↑ improvements in 
parallel SpMV time

↑ number of processors

↑ improvement rate in 
latency metrics

↑ degradation rates in 
bandwidth metrics

For message net cost of 50 with unit volume net cost:

27



1D parallel SpMV Experiments

HP-L-50: refers to message net cost of 50 with unit volume net cost

28



4. Regularization framework
Metrics & Optimization

trade-off between bandwidth and latency costs

Methodology & Key Features
two phase

many small-sized messages

29



Regularization Framework 
• Regularize irregular P2P messages

• impose regular communication pattern(s)
• VPT (Virtual Process Topology)

• Exploit VPT to attain a trade-off between bandwidth and latency cost metrics

• Using different dimensions in the formation of the VPT
• low-dimensional VPT  favors bandwidth costs over latency costs 
• high-dimensional VPT  favors latency costs over bandwidth costs.

• Especially tailored for latency bound applications where 
• messages are small or medium sized 
• there is high variance in the message counts of processors

Oguz Selvitopi and Cevdet Aykanat. “Regularizing Irregularly Sparse Point-to-point Communications.” The International Conference for High Performance Computing, 
Networking, Storage, and Analysis, SC19

30



Virtual Process Topology (VPT): Basics
• Characterized by

• Dimension

• Dimension sizes

• Process neighborhood

• K processors 𝑃1, 𝑃2, … , 𝑃𝐾
• n-dimensional VPT 𝑇𝑛(𝑘1, 𝑘2, … , 𝑘𝑛)

• 𝑘𝑑: size of dimension 1 ≤ 𝑑 ≤ 𝑛

• 𝐾 = 𝑘1 × 𝑘2 ×⋯× 𝑘𝑛

• Denote each processor 𝑃𝑖 as a vector of n 
coordinates
• 𝑃𝑖

𝑛, 𝑃𝑖
𝑛−1, … , 𝑃𝑖

1 , where 𝑃𝑖
𝑑 ∈ 1, 2, … , 𝑘𝑑

K=64 processes organized 
into 3-dimensional VPT 
T3(4,4,4)

31



VPT: Process neighborhood

• Two processors are neighbors if
• They differ in a single coordinate

• 𝑁 𝑃𝑖 , 𝑑 = neighbors of 𝑃𝑖 at dimension 𝑑
• Only processes in the same group can directly 

communicate with each other

• vs. neighborhood definitions in common 
regularly structured applications

Blue: Neighbors of Pi  along 1st dimension
Red: Neighbors of Pi  along 2nd dimension
Orange: Neighbors of Pi  along 3rd dimension

32



VPT: Process neighborhood

• Two processors are neighbors if
• They differ in a single coordinate

• In dimension d, there are K/kd processor
groups, each containing kd processors
• Only processes in the same group can directly 

communicate with each other

• vs. neighborhood definitions in common 
regularly structured applications

Blue: Neighbor process groups along 1st dimension
Red: Neighbor process groups along 2nd dimension
Orange: Neighbor process groups along 3rd dimension

33



VPT versus k-ary n-cube networks
• k-ary n-cube networks

• Generalization of hypercubes

• k = # of nodes at each dimension

• n = # of dimensions

• nodes in a dimension are connected as a 1D torus

• Two basic differences
• Context: software vs. hardware

• Neighborhood definition

34



Store-and-forward Algorithm: Multi-stage Communication
• A few more definitions

• SendSet(Pi): subset of processors Pi needs to send a mssg to

• mij: the message to be sent from Pi to Pj

• Straightforward approach (T1)

• No structure: each process may communicate with each other 

• Use VPT to perform communication

• A VPT Tn with n > 1 

• disables direct comm between nonneighbor processes

• store-and-forward scheme to handle nonneighbor mssgs

• staged execution: communication proceeds in n stages

• communication in a stage restricted to neighbor processes  

along the respective dimension 

MPI_Alltoallv

P1

SendSet(P1)

P2

SendSet(P2)

PK

SendSet(PK)
…

…

Store-and-forward 

algorithmVPT Tn

P1

SendSet(P1)

PK

SendSet(PK)
…

…

P2

SendSet(P2)

35



Communicating a Single Message on VPT

• Message mij

• Source Pi, destination Pj

• At each stage Store or Forward

𝑚𝑖𝑗 with destination 

𝑃𝑗 = 𝑃𝑗
𝑛, … , 𝑃𝑗

𝑑+1, 𝑷𝒋
𝒅, 𝑃𝑗

𝑑−1, … , 𝑃𝑗
1Stage 𝒅

Arrives at intermediate process 𝑃𝑘
Decide whether to forward 𝑚𝑖𝑗 by 

comparing 𝑑th coordinate

𝑃𝑗
𝑑 = 𝑃𝑘

𝑑
 Store 𝑚𝑖𝑗 at this stage 

𝑃𝑗
𝑑 ≠ 𝑃𝑘

𝑑
 Forward 𝑚𝑖𝑗 to 

𝑃𝑗
𝑛, … , 𝑃𝑗

𝑑+1, 𝑷𝒌
𝒅, 𝑃𝑗

𝑑−1, … , 𝑃𝑗
1

▷ How many times a message get forwarded?
○ Hamming distance

○ E-cube routing for hypercubes

○ Dimension-ordered deterministic routing

36



Stage 2:

source 1, 𝟏, 4

destination 3, 𝟑, 4

to 1, 𝟑, 4

Stage 3:

source 𝟏, 3,4

destination 𝟑, 3,4

to 𝟑, 3,4

𝑃𝑖 = 1,1,2

source

Communicating a Single Message on a VPT

𝑃𝑗 = 3,3,4

destination

Stage 1:

source        1,1, 𝟐

destination 3,3, 𝟒

to 1,1, 𝟒

1,1,4

𝒎𝒊𝒋

VPT 
𝑇3(4,4,3)

1,3,4

37



Multiple messages on VPT
• The communication between Pi and its neighbor Pj

• A single message containing a number of submessages

• Submessage

• two-tuple: (destination processor, message content)

• Direct message between Pi and PjMij

• Submessage with source Pi and destination Ph (Ph,mih)

38



Multiple messages on VPT - Example
39



Multiple messages on VPT - Example
40



Multiple messages on VPT - Example
41



Multiple messages on VPT - Example
42



Algorithm: Observations
• Scenario 1: two submessages originate from 

different processes but destined for the same 

process

Submessage (𝑷ℓ,𝒎𝒊ℓ)
Destination 𝑷ℓ

Submessage (𝑷ℓ,𝒎𝒋ℓ)

Destination 𝑷ℓ

Intermediate process 𝑃ℎ
Put (𝑷ℓ,𝒎𝒊ℓ) and (𝑷ℓ,𝒎𝒋ℓ) into 

the same forward buffer
Transfer in the same message 
onwards

𝑷𝒉

𝑷ℓ

𝑷𝒊 𝑷𝒋

▷ Scenario 2: two submessages originate from 

the same process but destined for different 

processes

Submessages (𝑷𝒋,𝒎𝒊𝒋) and (𝑷ℓ,𝒎𝒊ℓ)

Destinations 𝑷𝒋 and 𝑷ℓ

𝑷𝒊

Intermediate process 𝑃ℎ
Put (𝑷ℓ,𝒎𝒊ℓ) and (𝑷ℓ,𝒎𝒋ℓ) into the 

different forward buffers
Transfer in different messages 
onwards

𝑷𝒉

𝑷𝒋

𝑷ℓ

43



Algorithm: Observations
• Processing of submessages in received messages

• Scatter submessages across multiple forward buffers

• A buffer that will be used in communication stage d may 

be filled with submessages received at any stage < d

• Extreme cases

• 𝑇1 Each process may talk to every other process

• Single stage communication

• 𝑇log2 𝐾 Each process may talk to a single proces at each stage

• log2 𝐾 stages of communication (hypercube topology)

• K = number of processors

44



Forming VPT
• Given # of processes K

• How to organize them?

• How to choose VPT parameters?

• Two important aspects

• The dimension of the VPT (=n)

• The organization of the processes

• K=64, n=2  32x2, 16x4, 8x8

• K = k1 x k2 x … x kn

• Motivation: k1, k2, …, kn should be close to 

each other to keep max mssg count small

▷ VPT formation scheme
○ First log2𝐾 mod𝑛 dimensions    

size 2 log2 𝐾/𝑛 +1

○ The remaining 𝑛 – (log2𝐾 mod 𝑛 ) 

 size 2 log2 𝐾/𝑛

○ Ensures no two dimension sizes 
differ by more than a factor of 2

○ Lowest upper bound on max 
message count bound

▷ Caveat: May not be always 
desirable!

45



1D row parallel SpMV Experiments: Setup
• Schemes

• BL  Baseline (=STFW1)

• STFW STFW2, STFW3, etc. (STFWn: VPT with dimension n)

• Systems

• BlueGene/Q, Cray XC40, Cray XK7

• Processes

• 32 to 512 (small scale)

• 4K to 16K (large scale)

• Dataset

• 22 latency-bound instances

• Sparsity pattern: dense rows/cols and high coefficient of variation on row/col degrees

46



The buffer usage < 2x the buffer usage of BL!

Evaluation: Performance metrics
Time (usec)

Scheme mmax mavg vavg comm SpMV
buffer size 

(KB)

BL 120.5 50.2 1181 825 1091 20.1

STFW2 26.5 18.8 1844 439 681 38.8

STFW3 16.5 13.4 2279 386 631 38.3

STFW4 11.9 10.1 2736 359 608 37.9

STFW5 11 9.5 2848 383 649 36.1

STFW6 10 8.8 3082 334 632 33.6

STFW7 9 7.9 3336 329 622 34.5

STFW8 8 7.2 3544 322 636 32.3

Latency metrics
mmax = max msg count 4.6x-15.1x improvement
mavg = avg msg count 3x-8x improvement

Volume metric
vavg = average volume 1.6x-3.3x more volume than BL

Up to 61% improvement in communication time
Up to 44% improvement in overall SpMV time

47



Effect on Scalability
48



Communication Performance (large scale)

Scheme mmax mavg vavg
Comm

time

BL 1054.9 137.6 425 8220

STFW2 160.6 61.0 683 1109

STFW3 65.1 34.4 887 498

STFW4 41.8 24.3 1064 391

STFW8 20 13.9 1568 510

STFW9 19 13.9 1601 491

STFW13 15 11.4 1917 694

STFW14 14 10.5 2017 696

mmax max message count
mavg average message count
vavg average volume (words)

Torus network – 16K processes

Scheme mmax mavg vavg
Comm

time

BL 486.6 105.5 819 1419

STFW2 86.1 43.7 1271 294

STFW3 39.0 25.0 1682 221

STFW4 26.1 18.1 2024 238

STFW7 17.0 13.0 2594 199

STFW8 16.0 12.8 2663 270

STFW11 13.0 10.9 3098 289

STFW12 12.0 9.8 3312 387

Dragonfly network – 4K processes

95% improvement in 
communication time

86% improvement in 
communication time

49



2D Cartesian vs. STFW2 for SpMV 

• 2D row-column-parallel SpMV utilizing 
2D Cartesian Partitioning 
• Pre-comm: expand x-vector entries along cols of 2D 

VPT

• Local SpMV computations

• Post-comm: reduce on partial y-vector results along 
rows of 2D VPT

• 1D row-parallel SpMV using STFW2
• Pre-comm (STFW2) 

• Send x-vector entries along columns of 2D VPT

• Send and forward x-vector entries along rows
of 2D VPT

• Local SpMV computations

COMPARISON
• 2D Cartesian

• For large number of processors it suffers from large 
number of constraints

• may limit the solution space

• STFW2
• 1D partitioning
• Two stages of communication
• Latency cost can be further reduced by using 3D and 

higher dimensional VPTs

50



Conclusions
• Need better partitioning models for parallelizing irregular applications

• More accurate encapsulation of communication costs on HPC systems

• Communication is the bottleneck

• Latency “lags” behind the bandwidth 

• Models should focus more on latency aspects

• Communication costs are even more complex!

• Network topology, node hierarchy, routing protocol, contention, etc.

• Directions taken in this talk

• More capable partitioning models and/or frameworks

• Enhance existing models / New partitioning models

• Novel communication algorithms to offer trade-offs

• Challenges

• Which method suits the given application?

• Parallel and scalable partitioners

• How to enhance models to take into account more complex cost functions?

51



Method

Bandwidth Latency
Input/Output

Conformability
# of 

Phases
total max total max

Communication
Hypergraph 

1   
2 two

Cartesian
Partitioning  

3 
3


multi-
stage

Message-net
augmentation 
within RB HP

   one

STFW


1


3


3
 two

1: may increase in the second phase
2: 1D non-conformal, 2D fine-grain conformal 
3: provides upper bound

Conclusions
52



Ümit V. Çatalyürek, Bora Uçar, B. Barla Cambazoğlu Enver Kayaaslan, Kadir Akbudak

R. Oğuz Selvitopi, Seher Acer, Gündüz V. Demirci, M. Ozan Karsavuran, Tuğba Torun

Collaborators
53


