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Introduction & Motivation

e Our goal

* Efficient parallelization of irregular applications for distributed-memory systems
e Optimization of communication costs

 Communication costs = bandwidth cost + latency cost
 Bandwidth cost = volume of data communicated

* Total communication volume
e Maximum communication volume
* Latency cost = number of messages

* Total number of messages
* Maximum number of messages



Introduction & Motivation

* Communication time dtepentds on:
=t.+m
* |latency t, ommos Y
* volume t,

* Around 2KB/4KB

* |atency overhead equals to volume overhead

* Latency is more important for small
messages

e Goal

* Most existing approaches aim at reducing
volume overhead

* Aim at latency overhead
* Key to scalability

Time (micro seconds)

msg size Cray XE6 | Blue Gene/Q
4B 1.9 5.3
8B 1.9 5.3
16 B 1.9 5.3
32B 1.9 5.5
64 B 1.8 5.5
128 B 2.6 7.8
256 B 1.9 8.0
512 B 2.2 9.5
1 KB 2.4 10.2
2 KB 2.7 10.6
4 KB 3.7 12.5
8 KB 9.5 14.3
16 KB 11.9 17.4
32 KB 16.9 22.0
64 KB 27.6 31.2
128 KB 29.3 49.7]
256 KB 52.0 86.7
512 KB 108.3 159.7
1MB 213.5 307.1
2 MB 413.5 602.8
4 MB 821.2 1191.8
8 MB 1636.6 2371.9

ping-pong experiments on two systems
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Latency dominates
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Outline

* Four different frameworks/models will be discussed
* utilize existing partitioners in distinct ways
* do not require development of novel partitioners

1. Communication hypergraph
* minimize total comm vol and total # of mssgs (two phase)

2. Multi-stage hypergraph partitioning for Cartesian partitioning
* minimize total comm vol and provide upper bound on latency metrics

3. Recursive hypergraph partitioning
e Address total comm vol and total # of mssgs (single phase)

4. Regularization framework

* a flexible medium to attain a trade-off between bandwidth and latency cost
metrics (two phase)




1. Communication hypergraph

Metrics & Optimization
minimization of total comm vol, max comm volume and total # of mssgs

Methodology & Key Features
two phase
custom hypergraph models
fixed vertices




* Two phase methodology Expand Net nis anchored to V / P,

via a fixed vertex

* Phase 1: computational hypergraph/graph Comm. Tasks — Processors
* Minimize total comm volume e
* Balance on processors’ computational loads EP

* Phase 2: communication hypergraph e,
* Minimize total # of mssgs P, =
* Balance on processors’ volume loads e,

P3
« Communication hypergraph model e

e yertices: communication tasks

* nets: processors Fold

Processors Comm. Tasks

* Two types of communication tasks /i
* Expand communication task - scatter-like Py
* Fold communication task 2 reduce-like . /2
2
/3
P3\

* A K-way partition induces (K: # of processors)
* communication task to processor assignment

Ja



Partitioning communication hypergraph

Partition into K to distribute communication operations among K processors
Net n is anchored to part V, / P, via a fixed vertex m‘et

fixed vertex

Expand tasks Reduce tasks
Cut net - signifies messages that a processor Cut net - signifies messages that will be sent
will receive from other processors from a processor to other processors
Vi(£r)
Vi(P) ’

P, € P, VulP)
E—

Distribution of communication tasks among four processors

I

Partitioning objective minimizing
cutsize = minimizing total # of
mssgs

Partitioning constraint
maintaining balance on part
weights = balances comm volume
loads of processors



Applications

* Propoposed for 1D row- and column-parallel SpMV [1]

* Extended and enhanced for 2D row-column-parallel SpMV
e 2D Fine-grain partitioning [2], Jagged and Cartesian matrix partitioning [3]

* Extended and enhanced for 1D-parallel Sp GEMM algorithms [4]

* row-row-paralel
e outer-product-paralel
* inner-product-parallel

[1] Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Matrix-Vector Multiplies, Bora Ucar and Cevdet Aykanat, SIAM
Journal on Scientific Computing, 2004.

[2] Minimizing communication cost in fine-grain partitioning of sparse matrices, Bora Ucar and Cevdet Aykanat, ISCIS, 2003.

[3] Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.

[4] Partitioning models for scaling parallel sparse matrix-matrix multiplication, Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat, ACM Transactions on Parallel

Computing (TOPC), 2018.



SpMV Speedup — Benefits of reducing latency
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CHG enhanced 2D jagged model obtains the most promising results

Number of processors

Number of processors

Number of processors

CHG: communication hypergraph

CKBD: Checkerboard, JGD: Jagged, FG: Fine grain

Reducing latency cost in 2D sparse matrix partitioning models, R. Oguz Selvitopi and Cevdet Aykanat, Parallel Computing, 2016.
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SPpGEMM: Strong Scaling Experiments (Communication hypergraph models)
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Partitioning models for scaling parallel sparse matrix-matrix multiplication, Kadir Akbudak, Oguz Selvitopi, Cevdet Aykanat, ACM Transactions on Parallel Computing

(TOPC), 2018.
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Enhanced for encoding send-volume balancing in reduce
operations

* Original model does not encapsulate
minimizing maximum volume loads on

WD) 4 ()1 irregular reduce tasks
A Y vol (p1)=4-2 .
e =1 - * New vertex weights:
@)V: * Degree for processor vertices
WD) = 5 i * -1 for comm task vertices
ﬁz(vp):o vol (p;)=5-3 . .
: - Part weights correctly encapsulate send
volume loads of processors
vy %ln( . * Tools do not support negative weights
W) =2 vor A\Ps)= 2 , ,
e =2 e Vertex reweighting scheme
sent 4 * max degree - Degree for processor vertices

 +1 for comm task vertices

Reduce Operations: Send Volume Balancing While Minimizing Latency, M. Ozan Karsavuran, Seher Acer and C. Aykanat, IEEE Transactions on Parallel and Distributed
Systems, 2020.



2. Multi-stage hypergraph partitioning for

Cartesian partitioning

Metrics & Optimization
minimization of total communication volume
upper bound on latency metrics - total/maximum # of mssgs

Methodology & Key Features
partitioning along each dimension
multi-constraint partitioning

13



HP models for Cartesian partitioning

multi-dimensional workload arrays
® SpMV: 2D sparse matrix
® Tensor: N-dimenional sparse workload array for N-mode tensor
® SpGEMM: 3D sparse workcube

Assumption: multi-dimensional virtual processor topology (VPT)

Multi-dimensional hypergraph partitioning framework that matches VPT dimensions
® Enforces upper bounds on latency cost metrics

At each partitioning stage
® Minimize the total comm volume along the respective dimension

Multi-constraint vertex weight formulation

® Encode computational load balance



Cartesian Partitioning Applications

* First proposed for 2D row-column-paralel SpMV [1][2]
e 2D paralell SpMV [3]: pre- and post-comm along cols and rows of VPT

* Extended to N-dimensional sparse tensor decomposition [4]

* CPD-ALS
* Recently enhanced for 2D- and 3D-parallel SpGEMM algorlthms [5]
e 2D: Sparse Summa [6] i /// ///////////////
e 3D: Split-3D-SpGEMM [7] 4
e 2D- and 3D-cartesian partitioning -
of a 3D task domain
1D 2D 3D

[1] A hypergraph-partitioning approach for coarse-grain decomposition, Umit. V. Catalyiirek and Cevdet Aykanat, ACM/IEEE SC2001.

15

[2] On Two-Dimensional Sparse-Matrix Partitioning: Models, Methods and a Recipe, Umit V. Catalylirek, Cevdet Aykanat and Bora Ucar, SIAM Journal on Scientific Computing,, 2010.

[3] An efficientparallel algorithm for matrix-vector multiplication, B. Hendrickson, R. Leland, and S. Plimpton, Int. J.High Speed Computing, 1995

[4] Improving medium-grain partitioning for scalable sparse tensor decomposition, Seher Acer, Tugba Torun, Cevdet Aykanat, |IEEE TPDS, 2018.

[5] Cartesian Partitioning Models for 2D and 3D Parallel SpoGEMM Algorithms, Gunduz Vehbi Demirci and Cevdet Aykanat, IEEE TPDS (under review)

(6] Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments, A. Buluc, and J. R. Gilbert, SIAM Journal on Scientific Computing, 2012.

[7] Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication, A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams, SIAM

Journal on Scientific Computing, 2016.



Hypergraph Model for Cartesian Partitioning of 3D Tensor *

® 3-stage hypergraph partitioning model with| total cutsize = total communication volume

QxRxS

3x4x2 processor mesh

® Vertices represent slices and nets represent (sub)slices
® Net n connects vertex v if intersection of their slices is a nonzero fiber

® Direct extension of 2D checkerboard does not encode comm volume correctly

® Previos partitions incur subnets in the later HP models

® Hypergraph H4 = (V4, NP UN©)

® one vertex for each horizontal slice 3

® one net for each lateral slice, one net for each frontal slice

® (Q-way partition of H4

® (@ chunks of horizontal slices / /

¢ dividing slices along other modes into Q subslices 1

Stage 1




Hypergraph Model for Cartesian Partitioning of 3D Tensor *

® 3-stage hypergraph partitioning model with| total cutsize = total communication volume

® Vertices represent slices and nets represent (sub)slices QxRxS
® Net n connects vertex v if intersection of their slices is a nonzero fiber 3x4x2 processor mesh
® Direct extension of 2D checkerboard does not encode comm volume correctly

® Previos partitions incur subnets in the later HP models

® Hypergraph H4 = (V4, NP UN©) ;
® one vertex for each horizontal slice 3'
® one net for each lateral slice, one net for each frontal slice 1"273"74

Stage 1

® (Q-way partition of H4

® (@ chunks of horizontal slices : i 5 5 /

¢ dividing slices along other modes into Q subslices

® Hypergraph 8 = (VE, N4 u N©)

® one vertex for each lateral slice

® one net for each horizontal slice, one net for each frontal subslice AT

® R-way partition of H'B

Stage 2

® R chunks of lateral slices I I

® dividing (sub)slices along other modes into R subslices




Hypergraph Model for Cartesian Partitioning of 3D Tensor =

total cutsize = total communication volume

3-stage hypergraph partitioning model with

® Vertices represent slices and nets represent (sub)slices
® Net n connects vertex v if intersection of their slices is a nonzero fiber
® Direct extension of 2D checkerboard does not encode comm volume correctly

® Previos partitions incur subnets in the later HP models

QxRxS
3x4x2 processor mesh

® Hypergraph 8 = (VZ, N4 u N©) I
® one vertex for each lateral slice i )
?’o ® one net for each horizontal slice, one net for each frontal subslice 123" 1
= |® R-way partition of H'Z
® R chunks of lateral slices f 5 5 6 7
® dividing (sub)slices along other modes into R subslices
® Hypergraph H¢ = (V¢ VAU NE)
® one vertex for each frontal slice
ﬁ ® one net for each horizontal subslice, one net for each lateral subslice A
g ® S-way partition of ¢ .
® S chunks of frontal slices I I i
* dividing subslices along other modes into S subsubslices - — =




Experiments

Partitioning: PaToH with 4% imbalance at each stage

Baseline: DMS [1] (random permutation)

Parallel CPD-ALS code: implemented in C (MPI, Intel MKL)

System: Cray XC40 (two 12-core Intel Haswell Xeon, 128 GB)

Decomposition rank: F = 16

Number of processors: 64, 128, 256, 512, 1024

12 sparse tensors: nonzeros between 466K and 140M; nine 3-mode and three 4-mode

Average results of proposed model normalized w.r.t. those of baseline model

number of number of messages | communication volume parallel CPD-ALS runtime
processors | imbalance max avg max avg communication total

64 1.01 0.97 0.93 0.61 0.42 0.50 0.82 18%

128 1.01 0.97 0.93 0.60 0.45 0.56 0.78 22%

256 1.05 0.97 0.91 0.60 0.49 0.59 0.74 26%

512 1.05 0.98 0.90 0.53 0.51 0.61 0.72 28%

1024 1.05 0.97 0.85 0.53 0.53 0.61 0.72 28%
overall 1.03 0.97 0.90 0.57 0.48 0.57 0.76
reduction rates: -3% 3% 10% 43% 52% 43% 24%

[1]S. Smith and G. Karypis, A medium-grained algorithm for distributed sparse tensor factorization, IPDPS'16. 14



Experiments

® Strong scaling results

® CPD-ALS runtime

Baseline: random
cartesian partitioning

CPD-ALS runtime (in ms) CPD-ALS runtime (in ms)

CPD-ALS runtime (in ms)

o

&c— Baseline

— Proposed]

64 128 256 512 1024
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Flickr
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Experiments for 2D and 3D SpGEMM
H:Hypergrah
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Average speedup curves for 20 C=AA instances

* With increasing number of processors
e performance gap between random and hypergraph partitioning increases significantly
* 3D begins to perform better than 2D



3. Recursive hypergraph partitioning

Metrics & Optimization
minimization of total comm vol and total # of mssgs

Methodology & Key Features
single phase
message net augmentation

22



Recursive HP framework

e Addresses total comm volume and total # of mssgs
* Single phase framework

e Standard HP models: nets encapsulate total comm vol

* Augment standard HP model with message nets
* encapsulate total # of messages

* First proposed for scaling 1D row-parallel and column parallel SpMV [1]

* Extended for 2D row-column-parallel SpMV [2]
* based on fine-grain and medium-grain [3] partitioning

[1] A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously, Oguz Selvitopi, Seher Acer and Cevdet Aykanat, |EEE
TPDS, 2017.

[2] Optimizing nonzero-based sparse matrix partitioning models via reducing latency, Seher Acer, Oguz Selvitopi, Cevdet Aykanat, Journal of Parallel and Distributed
Computing, 2018.

[3] A Medium-grain method for fast 2D bipartitioning of sparse matrices, Daniel Pelt and Rob Bisseling, IPDPS 2014.

23



RB Framework and Message Nets

Basics

* We augment standard hypergraph model with message nets
The nets in the standard models: volume nets

* Our model relies on recursive hypergraph bipartitioning

Nets

e Volume nets: maintained via net-splitting

* Message nets: added to the current hypergraph to be bipartitioned

24

RB tree

M,

cur
messages

O-00
{chr OO OO J H I e 3Ll 90

¢+l £+ ¢+l {+1
}[0 }[1 i }[2:'-2 g_[zf-l

Simultaneous reduction of
bandwidth and latency costs

Having both net types in
bipartitions

Message nets

bipartition
g_[-é DI pé’ ‘g_[;ur
‘9_[-(21,1I'<_> pcur
M, H, ~— PP RB tree

* A message net connects vertices representing items/tasks that
necessitate a message together

* Such items/tasks are encouraged to be together either in P, or Py
* Asend net s; added for each P, which P.,,- sends a message to
* Connects vertices representing input items sent to Py
* Areceive net 1, added for each P, which P.,,- receives a message from

* Connects vertices representing tasks that need input items received from Py

Processor groups

e OO - OO

M

new
messages




RB-based Partitioning

Mnew - Mcur

Number of cut —
[ ]

message nets

Increase in number of messages that
P.,,,- communicates with others

Correctness

Message nets and volume nets with respective costs of t; and t,,
* Minimizing cutsize = minimizing the increase in communication cost

* Provides a more accurate communication cost representation

25

RB tree

M,

cur
messages

O-00
{chr OO OO J H I e 3Ll 90

¢+l £+ ¢+l {+1
}[0 }[1 i }[2:'-2 g_[zf-l

Flexible

bipartition
g_[-é DI pé’ 3_[;ur
‘9_[-(21,1I'<_> pcur
i, 9, «— PP, RB tree

Can be realized by using any hypergraph partitioning tool

Cheap

Cost(our model) = Cost(standard model) + O(p log, K)

* Our model traverses each pin once for each RB tree level

Processor groups

e OO - OO

M

new
messages




Recursive Hypergraphs in the Leaf Nodes of the Recursive Bipartitioning Tree 26

Bipartitioning
Tree Status

associated processor groups

addition of S, Sp: send nets
message nets Iy, ¥ receive nets

messages communicated by (e

7 Nz Ny

Rur

R
X
3

M
bipartitioning FH _,

¢ ]
¢ ¥ ¢ ¥
YoRo 5
"J—[Hﬂh :H; C




27

Experiments

For message net cost of 50 with unit volume net cost:

e Total number of messages: 35% — 44% improvement _
Average results for 30 SpMV instances

* Maximum number of messages: 20% — 31% _ i
normalized with respect to standard model

improvement

* Total volume: 17% — 48% degradation number of messages partitioning |  parallel

: | voume | .
« Maximum volume: 25% — 85% degradation fiet cost “m“m time | SpMV time

message

* Partitioning time: 8% — 33% degradation 128 Ues ks 1.17 e Ll ST

_ . 256 0.59 0.70 1.25 1.44 1.14 0.846

e Parallel SpMV time: 8% — 29% improvement - = - e g g o g
1024 0.57 0.74 1.41 1.69 1.24 0.715

M improvements in 2048 0.59 0.80 1.48 1.85 1.33 0.708

1 message net cost — Iatepncy metrics S

1 improvement rate in 1 degradation rates in
latency metrics bandwidth metrics

4 number of processors | «—p | T iMprovements in

parallel SpMV time




1D parallel SpMV Experiments
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4. Regularization framework

Metrics & Optimization
trade-off between bandwidth and latency costs

Methodology & Key Features
two phase
many small-sized messages

29



Regularization Framework

* Regularize irregular P2P messages
e impose regular communication pattern(s)
e VPT (Virtual Process Topology)

* Exploit VPT to attain a trade-off between bandwidth and latency cost metrics

* Using different dimensions in the formation of the VPT
* low-dimensional VPT = favors bandwidth costs over latency costs
* high-dimensional VPT = favors latency costs over bandwidth costs.

* Especially tailored for latency bound applications where

* messages are small or medium sized
* there is high variance in the message counts of processors

Oguz Selvitopi and Cevdet Aykanat. “Regularizing Irregularly Sparse Point-to-point Communications.” The International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC19

30



31

Virtual Process Topology (VPT): Basics

* Characterized by K=64 processes organized OQ O rzQ o
* Dimension into 3-dimensional VPT

 Dimension sizes T5(4,4,4)
* Process neighborhood

* K processors Py, P,, ..., Py

* n-dimensional VPT T,,(kq, k5, ..., ky)
e k;:size ofdimension1 <d <n
e K=ki Xk, XXk,

* Denote each processor P; as a vector of n
coordinates [ 3
1

« (P, PI*"L, ..., Pl), where P € {1,2, ..., ky}

tL’71



VPT: Process neighborhood

32

. . @, O PO @,
* Two processors are neighbors if o oY i g?
* They differ in a single coordinate o S S 9
* N(P;,d) = neighbors of P; at dimension d ILAEPLAEl EP%
» Only processes in the same group can directly % 57 90 ¢
communicate with each other H’Q _ .Q e o
* vs. neighborhood definitions in common @ SR O || R,(') ‘—: <3|-2-%| o
regularly structured applications ® o M ®
O O O O
, |o O O O
O O O O

Blue:  Neighbors of P; along 15 dimension
Red: Neighbors of P; along 2" dimension
: Neighbors of P; along 3™ dimension



VPT: Process neighborhood

* Two processors are neighbors if
* They differ in a single coordinate

* In dimension d, there are K/k, processor
groups, each containing k, processors

* Only processes in the same group can directly
communicate with each other

*vs. neighborhood definitions in common
regularly structured applications

Blue: Neighbor process groups along 1t dimension
Red: Neighbor process groups along 2" dimension
: Neighbor process groups along 37 dimension



VPT versus k-ary n-cube networks

* k-ary n-cube networks

Generalization of hypercubes

k = # of nodes at each dimension

n = # of dimensions

nodes in a dimension are connected as a 1D torus

Context: software vs. hardware
Neighborhood definition
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Store-and-forward Algorithm: Multi-stage Communication

A few more definitions

* SendSet(P;): subset of processors P, needs to send a mssg to

* my: the message to be sent from P; to P, , !

P, P, Py l
: SendSet(P,] ~  SendSet(P,) ~— ~ ~ ~ T T SendSet(P,) "~
e Straightforward approach (T,) endset(P) endset(P,) endset(F)
* No structure: each process may communicate with each other \\ /
MPI_Alltoallv
* AVPTT,withn>1
* disables direct comm between nonneighbor processes P, P, P,

|
: l
_ | SendSet(P P SendSet(Py)

* store-and-forward scheme to handle nonneighbor mssgs | enaset(Py sendset(P;) ‘ :
I I

» staged execution: communication proceeds in n stages : \A\‘ / I
I I
I Store-and-forward |
| . |
| algorithm :

e communication in a stage restricted to neighbor processes
8 shborp VPTT, ——

along the respective dimension



Communicating a Single Message on VPT

* Message m; How many times a message get forwarded?
* Source P;, destination P, Hamming distance

* At each stage Store or Forward E-cube routing for hypercubes

Dimension-ordered deterministic routing

m;; with destination

— d+1 pd pd-1 1
P, = (P, ..,PA*, P{, PR, L P

Arrives at intermediate process P, P# = P = Store m;; at this stage

J
Deci heth f i
ecide W ether to o.rward m;; by de 4 P,? > Forward my; to
comparing dth coordinate

(})jn, ---;})jd-l_l; Pd, })jd_l; ---;})]'1>



Communicating a Single Message on a VPT

VPT
>tage 1. O O Ty (4,4,3)
source (1,1, 2) O O
destination (3,3, 4 O O _
to (<1 1 4; O O Fj = (3,34)
T O O destination
Stage 2: Q O O O
source (1,1, 4) O O
destination (3, 3, 4) O 5 O 5
to (1, 3,4) O myi O
Stage 3: O (1,1,4)
source (1, 3,4) P =(L1,
destination (3, 3,4) 2 source

to (3,3,4) s

37



Multiple messages on VPT

* The communication between P; and its neighbor Pj

* Asingle message containing a number of submessages

 Submessage

» two-tuple: (destination processor, message content)

* Direct message between P. and Pj - M,-j

* Submessage with source P, and destination P, = (P,,m,,)

38



Multiple messages on VPT - Example

‘/ (f: (/ .Jb
il (2,1,4)

E’ SendSet(P,) = {P,, Py, P.}
L SendS’et(Pb) = {Pc, Py, Pf}

39



Multiple messages on VPT - Example

2

s

//’
v
‘/

(l-': ‘): 1;
‘/ (2,1,4)
(1,1,3)
SendSet(P,) = {P,, Py, P.}
SendSet( ) {P., Py, Pr}

\
N (9]
‘:ﬁ
D
"»“' -
w

o %, e,
R
\_
\.

%

(2,1,4)

(1 1,3)
Mag = { P, mac ) Pda mad)a (Pea mae)}
My, = {(Pe, mue), (Pa, mpa), (Pr, miy) }
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Multiple messages on VPT - Example
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Multiple messages on VPT - Example

5 (1,1,3) (1,1,3)
E’ ge — { PE’ mae)} MQC - {(PC) maC)a (Pc, mbc)}
1 th = {(Pc: mbc)a (Pd, mbd)} Mgd = {(Pda mad): (Pda mbd)}
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Algorithm: Observations

* Scenario 1: two submessages originate from
different processes but destined for the same
process

! :Submessage (P, mjp) |
1 1 Destination P, !

| Submessage (P, m;p)
Dest|nat|on P,

: Intermediate process Py,

: Put (Pg,mig) and (Pg, m]{)) into
: the same forward buffer

l Transfer in the same message

3 ' onwards

—————————————————————
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Scenario 2: two submessages originate from
the same process but destined for different
processes

| Submessages (Pj,m;j) and (P, m,{;) :
' Destinations P; and P, !

l Intermediate process Pj,

| Put (P,,m;,) and (Pp, mj,) into the
: ' different forward buffers

: Transfer in different messages

| onwards



Algorithm: Observations

* Processing of submessages in received messages

» Scatter submessages across multiple forward buffers

e A buffer that will be used in communication stage d may
be filled with submessages received at any stage < d

Submessages in received messages

L d ] 1] B4 1] |

* Extreme cases Scattering

» T, = Each process may talk to every other process

N N o ) Oy B

e Single stage communication .
Forward buffer

* Tlog, k — Each process may talk to a single proces at each stage

* log, K stages of communication (hypercube topology)

* K=number of processors



Forming VPT

* Given # of processes K VPT formation scheme
* Howto organize them? Firstlog, K modn dimensions =
* How to choose VPT parameters? size 2llogz K/n|+1

The remainingn - (log, K mod n)
> size 2llog2 K/l

Ensures no two dimension sizes
differ by more than a factor of 2

Lowest upper bound on max
message count bound

* Two important aspects
* The dimension of the VPT (=n)

* The organization of the processes
o K=64, n=2 > 32x2, 16x4, 8x8

e K=K, Xk, X..xKk
1 XKy X oo XK Caveat: May not be always

* Motivation: k,, k,, ..., k, should be close to desirable!
each other to keep max mssg count small
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1D row parallel SpMV Experiments: Setup

 Schemes
e BL = Baseline (=STFW1)
« STFW > , , etc. (STFWn: VPT with dimension n)

* Systems
* BlueGene/Q, Cray XC40, Cray XK7

* Processes

e 32to 512 (small scale)
e 4K to 16K (large scale)

 Dataset

e 22 latency-bound instances

 Sparsity pattern: dense rows/cols and high coefficient of variation on row/col degrees
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Evaluatlon Performance metrics

Normalized performance metrics at K = 256

4.00

2.00

—
=
g

BL (logscale)

<
o
S

<
bo
<t

Normalized values w.r.t.

VPT dimension

BB avg volume B communication time
B 1nax msg count B parallel SpMV time
EEE avg msg count

L — - — —
Volume metric
vavg = average volume 1.6x-3.3x more volume than BL

Up to 61% improvement in communication time

Latency metrics .
Up to 44% improvement in overall SpMV time

mmax = max msg count 4.6x-15.1x improvement
mavg = avg msg count 3x-8x improvement The buffer usage < 2x the buffer usage of BL!



Effect on Scalability
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Communication Performance (large scale)

Torus network — 16K processes Dragonfly network — 4K processes

mmax max message count 95% improvement in 86% improvement in

mavg average message count communication time communication time
vavg average volume (words)
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2D Cartesian vs. STFW2 for SpMV

e 2D row-column-parallel SpMV utilizing COMPARISON
2D Cartesian Partitionin T 2D Cartesian
artesia g * For large number of processors it suffers from large
* Pre-comm: expand x-vector entries along cols of 2D number of constraints
VPT * may limit the solution space

* Local SpMV computations

* Post-comm: reduce on partial y-vector results along
rows of 2D VPT

STFW2
* 1D partitioning
* Two stages of communication
e Latency cost can be further reduced by using 3D and

* 1D row-parallel SpMV using STFW2 higher dimensional VPTs

* Pre-comm (STFW2)
e Send x-vector entries along columns of 2D VPT

e Send and forward x-vector entries along rows
of 2D VPT

e Local SpMV computations



Conclusions

* Need better partitioning models for parallelizing irregular applications
* More accurate encapsulation of communication costs on HPC systems

e Communication is the bottleneck
* Latency “lags” behind the bandwidth

* Models should focus more on latency aspects

e Communication costs are even more complex!

* Network topology, node hierarchy, routing protocol, contention, etc.

e Directions taken in this talk

* More capable partitioning models and/or frameworks

* Enhance existing models / New partitioning models

* Novel communication algorithms to offer trade-offs

* Challenges
* Which method suits the given application?
e Parallel and scalable partitioners

* How to enhance models to take into account more complex cost functions?
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Conclusions

Input/Output # of
m““n i

Communication

Hypergraph v'1 x2 two
Cartesian _
Partitioning v v 3 v 3 v multi-

stage

Message-net

augmentation \/ \/ \/ one

within RB HP

STFW V1 v'3 v'3 v two

1: may increase in the second phase
2: 1D non-conformal, 2D fine-grain conformal
3: provides upper bound
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